Improbability of nonconvergence in a cubic root-finding method
نویسندگان
چکیده
منابع مشابه
Mcmullen’s Root-finding Algorithm for Cubic Polynomials
We show that a generally convergent root-finding algorithm for cubic polynomials defined by C. McMullen is of order 3, and we give generally convergent algorithms of order 5 and higher for cubic polynomials. We study the Julia sets for these algorithms and give a universal rational map and Julia set to explain the dynamics.
متن کاملQuasipolynomial root-finding: A numerical homotopy method∗
Quasipolynomials arise in a number of applications, and in particular as the characteristic equation associated with systems of delay differential equations. Quasipolynomial equations are generally difficult to solve, and most often must be solved numerically. In the non-trivial case, quasipolynomials have an infinite number of roots in the complex plane. We present a new numerical method for f...
متن کاملشناسایی و اولویت بندی عوامل موثر بر تاخیرات پروازی و ارائه راهکاری جهت کاهش تاخیر پروازها در ایران determination of root causes of flight delays and introducing a method of mitigation of flight delays in iran
مدتی است که تاخیرات پروازی و مشکلاتی که این مهم برای مسافران پیش می آورد اذهان فعالان صنعت گردشگری بالاخص زیر شاخه این حوزه صنعت حمل و نقل و عامه مردم را به خود معطوف داشته است. بر این اساس هدف این پژوهش بررسی عوامل موثر بر تاخیرهای پروازی و راهکارهای کاهش آنها است. جامعه مورد مطالعه، شامل کلیه مدیران و کارشناسان ارشد فرودگاه های مهرآباد و امام خمینی (ره) در سال 1392 می باشد که به روش نمونه گیر...
Application of Collocation Method in Finding Roots
In this paper we present a new method to find simple or multiple roots of functions in a finite interval. In this method using bisection method we can find an interval such that this function is one to one on it, thus we can transform problem of finding roots in this interval into an ordinary differential equation with boundary conditions. By solving this equation using collocation method we ca...
متن کاملA global root-finding method for high dimensional problems
A method to solve the problem f(x) = 0 efficiently on any n-dimensional domain Ω under very broad hypoteses is proposed. The position of the root of f , assumed unique, is found by computing the center of mass of an Ω-shaped object having a singular mass density. It is shown that although the mass of the object is infinite, the position of its center of mass can be computed exactly and correspo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1988
ISSN: 0022-247X
DOI: 10.1016/0022-247x(88)90415-5